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ABSTRACT. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement 27 

(ARM) program produces ground-based long-term contiguous unique measurements for 28 

atmospheric state, precipitation, turbulent fluxes, radiation, aerosol, cloud and the land surface, 29 

which are collected at its multiple Climate Research Facilities. These comprehensive datasets have 30 

been widely used to calibrate climate models and are proven to be invaluable for climate model 31 

development and improvement. This article introduces an evaluation package to facilitate the use 32 

of ground-based ARM measurements in climate model evaluation. 33 

34 

The ARM data-oriented metrics and diagnostics package (ARM-DIAGS) includes both ARM 35 

observational datasets and a Python-based analysis toolkit for computation and visualization. The 36 

observational datasets are compiled from multiple ARM data products and specifically tailored for 37 

use in climate model evaluation. In addition, ARM-DIAGS also includes simulation data from 38 

models participating the Coupled Model Inter-comparison Project (CMIP), which will allow 39 

climate-modeling groups to compare a new, candidate version of their model to existing CMIP 40 

models. The analysis toolkit is designed to make the metrics and diagnostics quickly available to 41 

the model developers. 42 

43 
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1. Introduction44 

A set of standard metrics and diagnostics provides an effective way for climate modeling45 

centers to routinely assess their model performance and judge the improvement of model 46 

simulations from new parameterizations. In the past, climate model developers have often relied 47 

on satellite remote sensing products to calibrate and tune their models. Satellite data sets provide 48 

a great global coverage, however, it is difficult to apply satellite data in some process studies due 49 

to their poor temporal resolutions. Therefore, utilizing detailed high-frequency ground-based 50 

measurements for a comprehensive collection of quantities can be a complementary test in model 51 

evaluation.  52 

Over the past three decades, the U.S. Department of Energy (DOE) Atmospheric Radiation 53 

Measurement (ARM) program has established several permanent research sites and deployed a 54 

number of ARM Mobile Facilities (AMF) in diverse climate regimes around the world to collect 55 

long-term continuous field measurements of clouds, aerosols, and radiation and their associated 56 

large-scale environments. These detailed field observations have provided a unique observational 57 

basis specifically for understanding cloud and precipitation related processes and evaluating and 58 

improving their representations in climate models. However, ARM data have not been extensively 59 

utilized in current model development workflows. With the growing interest in the climate 60 

modeling community in developing process-oriented metrics and diagnostics to aid 61 

parameterization developments (Maloney et al. 2019), the high-frequency process-oriented ARM 62 

observations should play a more important role in the future metrics and diagnostics development. 63 

In this article, we introduce the recently developed ARM data-oriented metrics and diagnostics 64 

package (ARM-DIAGS) for the global climate community to facilitate the use of ARM field data 65 

in climate model evaluation. The focus is on ARM unique observations on clouds and aerosols, as 66 
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well as process-oriented diagnostics that are particularly aimed to improve the representation of 67 

cloud and precipitation related processes in climate models, such as those included in the Coupled 68 

Model Inter-comparison Project (CMIP). The package is available publicly with the hope that it 69 

can serve as an easy entry point for climate modelers to compare their models with ARM data and 70 

supplemented CMIP datasets. 71 

72 

2. Overview of the ARM data-oriented metrics and diagnostics package73 

The ARM-DIAGS development closely follows the CMIP protocol to efficiently distribute74 

ARM metrics and diagnostics package along with other metrics packages to the CMIP community 75 

and other climate modeling centers. For this purpose, the diagnostic toolkit is built with the Python 76 

programming language and utilizes Python libraries for scientific analysis (such as NumPy and 77 

matplotlib). Additional Python packages developed by DOE (i.e., the Community Data Analysis 78 

Tools (CDAT), https://cdat.llnl.gov/) are also used. Four components are currently included in the 79 

ARM-DIAGS: 1) a Python-based analysis program; 2) an ARM-based collection of mean and 80 

diurnal and seasonal cycle climatologies as well as high time frequency data for process-oriented 81 

diagnostics; 3) a database of simulation data from models contributed to CMIP project; and 4) 82 

relevant technical documentations for ARM-DIAGS.  83 

The observations used to assess model performance primarily rely on the ARM Best Estimate 84 

(ARMBE) data products (Xie et al. 2010) and other ARM value-added products (VAPs) 85 

(https://www.arm.gov/capabilities/vaps), which are available for all the ARM permanent research 86 

sites and some ARM mobile facilities. These data often rely on measurements at the ARM Central 87 

Facility (CF) locations (i.e., single point measurements). To improve model-observation 88 

comparison, the ARM long-term continuous forcing data (Xie et al. 2004), which represents an 89 

https://www.arm.gov/capabilities/vaps
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average over a Global Climate Model (GCM) grid box, is also used when it is available. For cloud 90 

properties such as cloud liquid and ice water contents, the ARM Cloud Retrieval Ensemble Data 91 

(ACRED) (Zhao et al. 2012) is used. The detailed information about ARM data used in the ARM-92 

DIAGS package is listed in Tables 1a and 1b. The observational data product consists of hourly 93 

averaged, diurnal cycle, monthly means or climatological summaries of the measured quantities, 94 

with variable names, units and vertical dimensions remapped to CMIP convention. They are 95 

currently available for the Southern Great Plains (SGP) site (Table 1a) as well as the North Slope 96 

of Alaska (NSA) Barrow site and the Tropical Western Pacific (TWP) Manus, Nauru, and Darwin 97 

sites (Table 1b). Other than the ARM observations, ARM-DIAGS also includes simulation data 98 

from models participating CMIP project, which will allow climate-modeling groups to compare a 99 

new candidate version of their model to existing CMIP models. A full list of metrics and 100 

diagnostics are as follows, with a subset demonstrated in Section 3 of this article. 101 

 A set of basic metrics tables: mean, mean bias, correlation and root mean square error102 

based on annual cycle of each variable.103 

 Line plots and Taylor Diagrams (Taylor, 2001) for annual cycle variability of each104 

variable.105 

 Contour and vertical profiles of annual cycle and diurnal cycle of cloud fraction.106 

 Line and harmonic dial plots (Covey et al. 2016) of diurnal cycle of precipitation.107 

 Probability Density Function plots of precipitation rate (Pendergrass et al. 2014)108 

 Convection onset metrics showing statistical relationship between precipitation rate109 

and column water vapor (Schiro et al. 2016)110 

111 

3. Facilitating use of ARM data in climate model evaluation112 
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Diagnosis of summertime warm bias. The data and diagnostics provided through ARM-DIAGS 113 

have been used for studying the systematic warm bias in surface temperature found among the 114 

climate models in summertime at mid-latitude continent including the ARM SGP site (Zhang et 115 

al. 2018). The biases are consistent with both overestimated surface shortwave radiation and 116 

underestimated evaporative fraction, which contribute to the warm bias as illustrated in Figure 1. 117 

These diagnostics provide an integrated picture with detailed field observations to identify possible 118 

model deficiency in representing cloud, radiation, and land properties, as well as their interactions. 119 

120 

Diurnal cycle of cloud fraction: This daily cycle could serve as a critical test of the models' 121 

representation of the physical processes controlling cloud life cycle. One unique product from 122 

ARM is cloud vertical profile measurements derived from an integration of multiple active remote 123 

sensors, including Millimeter wavelength cloud radars, laser ceilometers and Micropulse Lidars 124 

(Active Remote Sensing of Clouds product, ARSCL). Figure 2 shows a comparison between 125 

observed and simulated diurnal cycle of cloud vertical structure over the ARM midlatitude and 126 

tropical sites (i.e., SGP and Manus), where prominent climatological diurnal cycle of clouds is 127 

present. Over the SGP site, a lack of shallow to deep cloud transition during summertime (June-128 

July-August) is shown in E3SM. This is a common model bias which is related to model deep 129 

convection that is triggered too easily and does not allow low clouds to build-up. The Manus site 130 

exhibits a strong diurnal cycle, with a maximum in low cloud fraction occurring at early local noon 131 

and followed by a maximum in high cloud hours later. Similarly, the model in general 132 

underestimated the lower cloud and overestimated high cloud, which is also lack of diurnal 133 

variability. 134 
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Diurnal cycle of precipitation. Diurnal cycle of precipitation is often served as a benchmark for 135 

climate models. The diurnal cycle diagnostics in ARM-DIAGS, which compare the precipitation 136 

intensity and its peak time, have been utilized by the Energy Exascale Earth System Model (E3SM) 137 

development team to assess the performance of a newly developed convection triggering 138 

mechanism (Xie et al. 2019). Figure 3 shows that all climate models including the default E3SM 139 

are not able to capture the observed nocturnal peak which is often associated with the eastward 140 

propagation of mesoscale convective systems. A recently developed convective triggering 141 

function, which incorporates an empirical dynamic constraint and allows elevated convection to 142 

be captured, started to pick up the early morning peak time, although the intensity is still too weak. 143 

These diagnostics are useful to repeat continually, especially when new features in convection 144 

parameterizations are implemented. 145 

 146 

Precipitation distribution. The probability density function analysis for daily mean precipitation 147 

at the SGP site during June-July-August is shown in Figure 4. This example illustrates that models 148 

tend to underestimate heavy rainfall (>10 mm per day) occurrences which contribute more to the 149 

total precipitation amount than lighter rainfall occurrence. The overlaying result from GPCP 150 

(Global Precipitation Climatology Project One-Degree Daily Precipitation Data Set) also confirms 151 

this systematic model bias.  152 

 153 

Convection onset metrics. Convection onset metrics allow users to compare diagnostics for the 154 

behavior of deep convection from ARM observations to model output. The statistics quantify 155 

robust relationships between precipitation, column water vapor (CWV) and temperature. This 156 

includes the sharp increase or “pickup” in conditional-average precipitation rate above a critical 157 

CWV value seen in Figure 5a, which is easily identifiable for short time averages at tropical ARM 158 
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sites. The pickup represents the onset of conditional instability yielding strong convective 159 

precipitation (Schiro et al. 2016) and is also seen in the probability of precipitation (Figure 5b). 160 

The probability density of CWV and the contribution from precipitating points (Figure 5c) have a 161 

drop in probability density at high CWV corresponding to the regime with high precipitation loss 162 

above critical.  163 

The statistics discussed here can distinguish between models’ convective parametrizations and 164 

their qualitative characteristics are robust to space and time averaging (Kuo et al. 2018). An 165 

example of model comparison is given in Figure 5. An important diagnostic in the model 166 

evaluation of convection onset concerns the critical CWV value where the precipitation pickup 167 

begins. Many models exhibit a pickup at lower CWV than observations (Kuo et al. 2020), as seen 168 

in Figure 5a for E3SM. This mismatch persists even when temperature dependence (not shown but 169 

will be included in a feature release of ARM-DIAGS) is included by binning by the saturation 170 

water vapor.  171 

 172 

4. Summary and future work 173 

The ARM metrics and diagnostics package is designed and developed to facilitate the use of ARM 174 

ground-based in-situ measurements in climate model evaluation. Metrics and diagnostics 175 

evaluating the simulated atmospheric and cloud fields are generated by running a Python program 176 

in a simple software environment based on CDAT. The v2.0 ARM-DIAGS’s analysis codes are 177 

currently publicly available through GitHub (https://github.com/ARM-DOE/arm-gcm-178 

diagnostics) under the ARM User Facility project space. Analysis data include ARM observational 179 

datasets and the reference CMIP5 AMIP data can be downloaded through the ARM archive 180 

(https://www.arm.gov/capabilities/vaps/adcme-123). For now, the default requirement for the 181 

https://www.arm.gov/capabilities/vaps/adcme-123
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input model is that the data are under CMIP conventions. Anyone interested in applying ARM-182 

DIAGS to a specific model should contact the development team via our GitHub page for specific 183 

configurations for a model run.  184 

Future work includes extending the ARM-DIAGS to the ARM Eastern North Atlantic (ENA) site 185 

(a new fixed site) and ARM AMF sites. CMIP6 data will be included as it becomes available. The 186 

diagnostics suite will be continuously improved with close collaboration with scientists in the field. 187 

Ongoing work includes incorporation of the recently developed ARM cloud radar simulator (Y. 188 

Zhang et al. 2018) into ARM-DIAGS to improve the comparison between model clouds and ARM 189 

cloud radar observations, as well as adding temperature dependence to convection onset statistics. 190 

In addition, utilizing other sources of observations, such as those retrieved from satellites, as 191 

supplementary data, can help address issues associated with observation uncertainty and data 192 

resolution. 193 
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Figure Captions Lists: 292 

 293 

Figure 1: Annual cycle of monthly mean of (a) surface air temperature, (b) precipitation, (c) surface 294 

air relative humidity, (d) surface downward shortwave radiative flux, (e) surface sensible flux, and 295 

(f) surface latent heat flux over the ARM SGP domain (averaged over 35-38°N, 99-96°W) from 296 

ARM observation averaged over 1999 to 2011 (red line with error bars representing one standard 297 

deviation of inter-annual variability) and CMIP5 simulations averaged over 1979 to 2008 (grey 298 

lines for individual CMIP5 models and black line for multi-model mean). JJA mean values are 299 

shown in the legend. Plots are modified from Zhang et al. (2018). 300 

Figure 2: Climatological composite diurnal cycle of clouds from observed (left panel) and 301 

simulated by E3SM (right panel). JJA mean at SGP (row 1); Annual mean at Manus (row 2). 302 

Figure 3: Left: black dots are ARM observation. Curves are the first harmonics: grey for CMIP5 303 

model AMIP type of runs. Color curves are from DOE’s E3SM Atmosphere Model (EAM v1) 304 

with a standard control run and a run using newly developed convection triggers (Detailed 305 

experiment description can be found in (Xie et. al., 2019). Right: mapping precipitation peak 306 

time and amplitude from the first harmonics to polar coordinate. 307 

 308 

Figure 4: Daily-Mean precipitation frequency (a) and precipitation amount (b) as a function of 309 

precipitation rate using observations from ARM (blue line) and GPCP (red line) compared with 310 

CMIP5 AMIP simulations shown as gray lines. The black line represents the multi-model mean. 311 

The precipitation bin arrangement follows method described by Pendergrass et al. (2014). 312 
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Figure 5: (a) Precipitation conditionally averaged on column water vapor (CWV) for observations 313 

indicated by color-coded dots (ARMBE precipitation and gap filled MWRRET radiometer CWV) 314 

and E3SM model output (black) over Manus Island. (b) as in (a) but for precipitation probability. 315 

(c) The PDFs of CWV for observations (dark blue) and model (black) and of the contribution to 316 

this from points with precipitation exceeding 0.5 mm/hr for observations (light blue) and model 317 

(grey).  318 

  319 
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Figure 3: Left: black dots are ARM observation. Curves are the first harmonics: grey for CMIP5 333 

model AMIP type of runs. Color curves are from DOE’s E3SM Atmosphere Model (EAM v1) 334 

with a standard control run and a run using newly developed convection triggers (Detailed 335 

experiment description can be found in (Xie et. al., 2019). Right: mapping precipitation peak 336 

time and amplitude from the first harmonics to polar coordinate. 337 

 338 
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Figure 4: Daily-Mean precipitation frequency (a) and precipitation amount (b) as a function of 342 

precipitation rate using observations from ARM (blue line) and GPCP (red line) compared with 343 

CMIP5 AMIP simulations shown as gray lines. The black line represents the multi-model mean. 344 
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a)                                            b)                                             c) 347 

Figure 5: (a) Precipitation conditionally averaged on column water vapor (CWV) for observations 348 

indicated by color-coded dots (ARMBE precipitation and gap filled MWRRET radiometer CWV) 349 

and E3SM model output (black) over Manus Island. (b) as in (a) but for precipitation probability. 350 

(c) The PDFs of CWV for observations (dark blue) and model (black) and of the contribution to 351 

this from points with precipitation exceeding 0.5 mm/hr for observations (light blue) and model 352 

(grey).  353 

  354 
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Table 1a 355 
Quantities ARM Data Products Data Source/ Instruments Time resolution Spatial info 

Surface Screen-Level 

Temperature/ Humidity 

ARM 

Continuous 

forcing dataset 

Surface Meteorological 

Observation System (SMOS), 

Oklahoma and Kansas mesonet 

stations (OKM and KAM)[Xie et 

al. 2004] 

mon, day, hr sgp domain 

averaged 

Temperature/Humidity 

profile/wind speed/large 

scale tendencies 

Same as above NOAA/ NCEP Rapid Update 

Cycle (RUC) analysis data [Xie et 

al. 2004] 

mon, day, hr sgp domain 

averaged 

Surface Precipitation Same as above Arkansas-Red Basin River 

Forecast Center (ABRFC) 

Nexrad radar precipitation 

estimates w/ rain gauge 

mon, day, hr sgp domain 

averaged 

Precipitable Water Same as above Microwave Radiometer (MWR) 

water liquid & vapor along line of 

sight (LOS) path (MWRLOS) 

mon, day, hr sgp domain 

averaged 

Surface All Sky Radiative 

Fluxes 

Same as above Data Quality Assessment for 

ARM Radiation Data (QCRAD) 

[Long and Shi, 2006, 2008] 

mon, day, hr sgp domain 

averaged 

Aerosol Optical Depth 

550nm 

MFRSRAOD1M

ICH 

Multifilter Rotating Shadowband 

Radiometer (MFRSR) [Knootz et 

al.,2013] 

mon Averaged over 

sgp Site C1 and 

E13 

Surface Latent/Sensible 

Heat 

BAEBBR Best-Estimate Fluxes From 

EBBR Measurements and Bulk 

Aerodynamics Calculations 

(BAEBBR) [Cook, 2011a] 

mon sgp domain 

averaged 

QCECOR Quality Controlled Eddy 

Correlation Flux Measurement 

[Cook, 2011b] 

mon sgp domain 

averaged 

Surface Soil Moisture 

Content (10 cm) 

SWATS Soil Water and Temperature 

System (SWATS) ) [Bond, 2005] 

mon sgp domain 

averaged 

Cloud Fraction ARSCL Active Remote Sensing of Clouds 

[Clothiaux et al, 2001] 

mon, day, hr sgp Site C1 

Ice Water Content/Liquid 

Water Content 

ACRED ARM Cloud Retrieval Ensemble 

Dataset [Zhao et al. 2012] 

mon, day, hr sgp Site C1 

 356 

  357 
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 358 

Table 1b 359 
Quantities ARM Data 

Products 

Data Source/ Instruments Time resolution Spatial info 

Surface Screen-Level 

Temperature/ Humidity 

ARMBE-

ATM 

ARM-standard meteorological 

instrumentation at the surface [Xie et 

al. 2010] 

mon twp C1; nsa C1 

Surface Precipitation ARMBE-

ATM 

Same as above mon, hr twp C1; nsa C1 

Precipitable Water ARMBE-

ATM 

Microwave Radiometers Retrievals 

(MWRRET) [Xie et al. 2010] 

 

mon, hr twp C1; nsa C1 

Surface Radiative Fluxes ARMBE-

CLD 

Data Quality Assessment for ARM 

Radiation Data (QCRAD) [Long and 

Shi, 2006, 2008] 

mon twp C1; nsa C1 

Cloud Fraction ARSCL Active Remote Sensing of Clouds 

[Clothiaux et al, 2001] 

mon, hr twp C1; nsa C1 

 360 

Table 1: Observed quantities selected in the evaluation package, including the quantity names, 361 

the data sources, and the temporal and spatial information of the data. (a) for SGP and (b) for 362 

NSA and TWP sites. 363 




